Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase.
نویسندگان
چکیده
Myeloperoxidase uses hydrogen peroxide (H2O2) to generate hypochlorous acid (HOCl), a potent cytotoxic oxidant. We demonstrate that HOCl regulates the activity of matrix metalloproteinase-7 (MMP-7, matrilysin) in vitro, suggesting that this oxidant activates MMPs in the artery wall. Indeed, both MMP-7 and myeloperoxidase were colocalized to lipid-laden macrophages in human atherosclerotic lesions. A highly conserved domain called the cysteine switch has been proposed to regulate MMP activity. When we exposed a synthetic peptide that mimicked the cysteine switch to HOCl, HPLC analysis showed that the thiol residue reacted rapidly, generating a near-quantitative yield of products. Tandem mass spectrometric analysis identified the products as sulfinic acid, sulfonic acid, and a dimer containing a disulfide bridge. In contrast, the peptide reacted slowly with H2O2, and the only product was the disulfide. Moreover, HOCl markedly activated pro-MMP-7, an MMP expressed at high levels in lipid-laden macrophages in vivo. Tandem mass spectrometric analysis of trypsin digests revealed that the thiol residue of the enzyme's cysteine switch domain had been converted to sulfinic acid. Thiol oxidation was associated with autolytic cleavage of pro-MMP-7, strongly suggesting that oxygenation activates the latent enzyme. In contrast, H2O2 failed to oxidize the thiol residue of the protein or activate the enzyme. Thus, HOCl activates pro-MMP-7 by converting the thiol residue of the cysteine switch to sulfinic acid. This activation mechanism is distinct from the well-studied proteolytic cleavage of MMP pro-enzymes. Our observations raise the possibility that HOCl generated by myeloperoxidase contributes to MMP activation, and therefore to plaque rupture, in the artery wall. HOCl and other oxidants might regulate MMP activity by the same mechanism in a variety of inflammatory conditions.
منابع مشابه
Matrilysin is expressed by lipid-laden macrophages at sites of potential rupture in atherosclerotic lesions and localizes to areas of versican deposition, a proteoglycan substrate for the enzyme.
Certain matrix metalloproteinases (MMP) are expressed within the fibrous areas surrounding acellular lipid cores of atherosclerotic plaques, suggesting that these proteinases degrade matrix proteins within these areas and weaken the structural integrity of the lesion. We report that matrilysin and macrophage metalloelastase, two broad-acting MMPs, were expressed in human atherosclerotic lesions...
متن کاملCurcumin effects on myeloperoxidase, interleukin-18 and matrix metalloproteinase-9 inflammatory biomarkers in patients with unstable angina: A randomized clinical trial
Objective: Inflammation along with oxidative stress plays an important role in the development, progression, instability and rupture of coronary atherosclerotic plaques. Several studies introduced curcumin (diferuloylmethane) as a wonderful chemical in Curcuma longa<span style="font-size: m...
متن کاملRelationship of MMP-14 and TIMP-3 Expression with Macrophage Activation and Human Atherosclerotic Plaque Vulnerability
Matrix metalloproteinase-14 (MMP-14) promotes vulnerable plaque morphology in mice, whereas tissue inhibitor of metalloproteinases-3 (TIMP-3) overexpression is protective. MMP-14(hi) TIMP-3(lo) rabbit foam cells are more invasive and more prone to apoptosis than MMP-14(lo) TIMP-3(hi) cells. We investigated the implications of these findings for human atherosclerosis. In vitro generated macropha...
متن کاملLysophosphatidic Acid Is Associated with Atherosclerotic Plaque Instability by Regulating NF-κB Dependent Matrix Metalloproteinase-9 Expression via LPA2 in Macrophages
Lysophosphatidic acid (LPA), one of the simplest phospholipid signaling molecules, participates in formation and disruption of atherosclerotic plaque. Matrix metalloproteinases (MMPs) contribute to atherosclerotic plaque rupture by involving in extracellular matrix (ECM) degradation and then thinning fibrous cap. Our previous study demonstrated that macrophage-derived MMP-9 was associated with ...
متن کاملProduction of metalloproteinase-7 (matrilysin) by human myeloma cells and its potential involvement in metalloproteinase-2 activation.
Matrix metalloproteinases (MMPs) play a critical role in bone remodeling and tumor spreading. Multiple myeloma (MM) is a plasma cell malignancy primarily localized within the bone marrow and characterized by its capacity to destroy bone matrix and to disseminate. We have reported recently that human myeloma cells were able to induce the conversion of pro-MMP-2 produced by the tumoral environmen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 276 44 شماره
صفحات -
تاریخ انتشار 2001